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An analysis of the uncertainty in mea- 
suring tlie root-mean-square, rms or R^, 
value of a periodic waveform which re- 
sults from the use of a finite record 
length is presented. Even though the re- 
sults of the analysis are somewhat as ex- 
pected, i.e., that the uncertainty is 
inversely proportional to the number of 
periods in the record, the explicit rela- 
tionship between the magnitude of the 
uncertainty and properties of the wave- 
form does not appear to be available in 
the literature. The paper first presents 
an introductory example in terms of the 
reasonably well known case of band- 

width limited Gaussian waveform to in- 
troduce definitions. Following this is an 
analysis of the periodic waveform using 
the same approach. It is shown that for 
a large number of periods, n, in the 
record length, the normalized three 
standard deviation of the rms value is 
given by 3/(87rn). 
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1.    Introduction 

This paper presents a discussion of the uncer- 
tainty in measuring the root-mean-square, rms, 
value of a periodic waveform which results from 
the use of a finite record length. The analysis was 
motivated by seeking to understand the source of a 
random uncertainty component which was present 
in some measurements of the absolute arithmetic 
average, R^, deviation from a mean line of profiles 
of precision roughness specimens. The profiles of 
these specimens had an approximately triangular 
waveform with two wavelengths and amplitudes. 
For the longer wavelength specimens the random 
phasing of the waveform with respect to the 
recording interval proved to be a major source of 
uncertainty in the measurements. In this case the 
record length included 40 periods of the wave- 
form. Even though the results of the analysis are 
somewhat as expected, i.e., that the uncertainty is 

inversely proportional to the number of periods in 
the record, the explicit relationship between the 
magnitude of the uncertainty and properties of the 
waveform does not appear to be available in the 
literature. The discussion first presents an example 
in terms of the reasonably well known case of a 
bandwidth limited Gaussian waveform to intro- 
duce some definitions and relationships. Following 
this is an analysis of the periodic waveform which 
uses a similar approach. 

2.    Bandwidth Limited Gaussian Waveform 

By definition the mean square value, q^, calcu- 
lated from a finite length L of the waveform j(ji:) is 
given by the equation: 
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q^=\/L \ y\x)6x. 
J 0 

(1) 

For convenience and brevity in the following dis- 
cussion, the definitions listed below will be used 
[1]. 

where L * is the shift distance required for the auto- 
correlation function to drop by 63% of its zero 
shift value. If Z,>>L* the relation reduces to 

var{g^}   ^L* 
-4 —-^    T 

Sample space=the set of points representing the 
possible outcomes of a measure- 
ment. 

(j)(^)=a real number, called the random 
variable, which represents the out- 
come of a measurement indexed by 
k. 

p(<^)=lim Probability \<b<Mk)«i>+Atbl 

E{g[^(ky\}^the expected value of any real sin- 
gle-valued continuous function 
g(4>) of the random variable 4>(,k). 
It is given by: 

E{g[<^{k)]}=f\ici>)p(4>)d4>. 
^^    — CO 

As an example, the mean square value of y(pc) is 
given by: 

E\y\x)]=f y\x)pix)dx. 

E\y\x)] will be defined as g^ which is that value 
approached by g^ as the record length L ap- 
proaches infinity. Also q^ is the limiting value for 
the mean ^^ as the number of samplings gets large. 
The variance of y(x) is defined by: 

variy}=E[(y-yy-]= f" (y-yfp(x)dx. 
J    —00 

Similarly the variance in i^^ is defined by: 

v&v{q'}=E[{q'-qy]. 

For the special case -whenyipc) is a bandwidth lim- 
ited Gaussian waveform with zero mean, Bendat 
and Piersol [1] show that 

var {<7^}   IL* 
1-e -2L/L* 

' L U'^^y -1 

The propagation of error formulae discussed by Ku 
[2] may be used to relate the_variance of the root- 
mean-square value=rms=Vg^ to this variance of 
q^. Results given in table 1 of this reference show 
that if 

var g 
= e, then 

var rms 
-q" 

e 
'4" 

Thus, the normalized three-standard-deviations 
limit, 3SD, in the root-mean-square values calcu- 
lated from randomly sampled lengths, L, of a 
Gaussian profile with a correlation length L* is 
given by: 

3SD limit of 
rms 

''1 L   ~^-^    L 

Whitehouse and Archard [3] report reasonable 
confirmation of this result for their test specimens 
which had approximately Gaussian profiles. The 
importance of this result is stated very clearly by 
Whitehouse and Archard [3]. "The variance of 
measured rms or R^ values for the roughness of a 
surface may be found easily if one knows the stan- 
dard deviation of a large number of such measure- 
ments made upon the same surface. Alternatively 
one may predict the variance from a knowledge of 
the correlation length of a typical profile of the test 
surface." The argument just given for the 3SD 
limit partially fulfills the "it can be shown" state- 
ment by Whitehouse and Archard. 

3.   Periodic Waveforms 

Unfortunately these results do not apply for peri- 
odic waveforms such as that of many precision 
roughness specimens. However, the principles of 
calculation are still applicable. Consider the exam- 
ple of the sinusoidal waveform: 

y{x)—A sin(<ox-)-6). (2) 

The waveform is sampled for a length L with the 
phase angle 6 considered as the random variable of 
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the sample space. The angle 6 will be considered as 
having a uniform distribution over values from 0 to 
In, i.e.. 

p(0)=^, Q<e<2TT andj7(0) = O, for all other 

values of 0 

According to definitions in eqs (1) and (2): 

i/> 'sm\(ax + 6)dx. 

Evaluation of the integral yields 

9'=- 
sin 2(8 + 0)    sin 20 

2u)L 2(oL 

where d = oiL~2nv. The conditional variance of 
g^, given S, is (noting that q^=A^/2): 

/•ITT 

•I 0 

277 

A"-,.    sin 2(8+0) , sin 20    A 
(1 2aiL 2a>L 

d0. 

Evaluation of the integral yields: 

var(5^|8)= 
^'(1-cos 28) 

16 oi^L'      ■ 

Thus, if the record length happens to include an 
integral number of periods, var q^=0. But if we 
take the more likely case in which S has a distribu- 
tion of values like that of 0 due either to variations 
in the measured wavelength, co"', or in the record 
length, L, the result integrated with respect to 8 is 
obtained as follows. 

T(q%=^j\ax{q'\S)d8 

<'^''A\l-cos28) 
TT2      dS. \6(^^L 

Substituting <siL=8+2mr followed by the intro- 
duction of dummy variables x and y reduces the 
integral to: 

var(^^)s 277 J, 
X   doc 

(cosj/;>^)d;'. 

Solving these integrals yields: 

(var^%= 
1 

16 47r'K(« + l) 
or 

(var q\ 

1 
■l6'7r'«(«+l) 

where n is again defined by the equation 
8=(t)L—2mT. This result for (var q^^s does ac- 
count for the relationship between caL and 8. Use 
of the same relationships between var q^ and 
var rms given earlier yields: 

(var rms)s 1 
647r^n(« + l)' 

An averaged normalized three-standard-deviation 
limit for variations of the rms values is then given 
by: 

3SDf^)==^—^ 
V 9 7   ^-^V^^FH^ («+i) 

or for large n, 

\ q J    aTTH 

(3) 

(4) 

Finally, if the record length L and measured wave- 
lengths, (a~\ are stable and such that 8 has a nar- 
row distribution about 7r/2 or 377-/2 the 
3SD(rms/^) could be as much as twice this average 
value. 

4.   Comparison with Variations of 
Roughness Measurements 

For surface profiles obtained from roughness 
measurements, one would expect that the normal- 
ized BSD of a set of measured R^ values would be 
approximately equal to that computed for the i?q 
(rms) values since both quantities are similar mea- 
sures of the sampled profile's empirical probability 
density function. The measurements of i?a values 
which initiated this analysis should therefore be un- 
derstandable in terms of the results just derived. 

For the measurements, two types of specimens 
were used; one set had an R^ value of 3.2 jam and a 
wavelength such that « =40; the other set had an 
i?a value of 0.5 ;j,m and a wavelength such that 
ft =250. Record lengths for the measurements were 
approximately 3.8 mm. Predicted uncertainties for 
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the variations of a measured value about the mean 
R„ are therefore: 

3SD3.2^„,=0.3% of mean R^ 

and 

3SDo. 5 fxm' = 0.05% of meani?a 

if one assumes the averaged three standard devia- 
tions hmit. The maximum values for the analytical 
uncertainties are 0.6 and 0.1% of the mean R^ val- 
ues for the 3.2 and 0.5 jum specimens, respectively. 

In a series of 80 sets of three R^ measurements, 
the uncertainty (3 standard deviations) of these 
triplicate measurements with respect to their aver- 
age values was: 

combination of random amplitude and phase modu- 
lation. The effect of an additive random function is 
the only one which can be readily analyzed. For 
this case the rms value of the sum of two uncorre- 
lated waveforms adds in a rms manner. Assume 
that the waveforms can be represented by the sum 
of a random component, with an rms value of ^R 

and a correlation length of L*, and a periodic com- 
ponent, with an rms value of qp and angular fre- 
quency ft). Then the use of propagation of error 
formulae derived by Ku [2] yields: 

=Kf)='-'hT +- 16«V 

where n and L are as defined earlier and 

3SD3 2=1.0% of mean R, 

and 

3SDo.5=0.7% of mean R^. 

The intent of this comparison between the analyti- 
cal and experimental values is not that of justifying 
the theoretical analysis. However, in terms of un- 
derstanding the experimental variations the agree- 
ment is sufficient to confirm that, for the longer 
wavelength specimen, a major source of uncer- 
tainty for the roughness measurements results from 
the finite sampling length. 

The imperfect waveforms of the precision 
roughness specimens are the most likely sources of 
the residual uncertainty. As illustrated in figure 1 
the specimen waveforms have distortions which 
are produced by either an additive random func- 
tion together with phase modulation or by the 

3.25 p,mT 

:1.06|JLII1 

1a. Waveform of 3.2 |i.m R, Specimen 

0.S2 n-mj 

= 25.S |xm 

1b. Waveform of 0.5 )ji.m Ra Specimen 

Figure 1. Waveforms of roughness specimens which were used 
for statistical studies. 

- -ip -hi 
Estimates of ql and L * from the calculation of au- 
tocorrelation functions of the waveforms for the 
0.5ju.m—i?a specimen are: L* = 0.05 L and ^R = 0.01 

qp. Effects of random amplitude and phase modula- 
tion are not accounted for in these estimates. With 
these values of ql and L * the dominant source of 
uncertainty for the waveform sampled for 250 peri- 
ods is the random additive component which in- 
creases the uncertainty limits to 0.3% of the mean 
value. Approximately the same values for L * and 
qi were obtained from studies of the 3.17jtim—i?a 
specimen. Since ^'^=2.8x10"'* qp, in this instance, 
the uncertainty produced by the random compo- 
nent is insignificant for measurements on this speci- 
men. 

5.    Conclusion 

The uncertainty in measuring the root-mean- 
square value of a finite record length of a periodic 
waveform has been obtained and is given in eqs (3) 
and (4). The theoretical results were compared 
with data obtained from surface profile measure- 
ments of precision roughness specimens. However, 
eqs (3) and (4) are quite general and will apply to 
rms measurements of the amplitude of periodic 
waveforms arising from other areas. 

During customary announcements of this paper 
to NIST staff, an analysis of the errors of measure- 
ment due to variations in sampling interval length, 
(complimentary to that presented here), was 
brought to the author's attention. The effects of 
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adjusting the sample interval length relative to an 
integral number of cycles of the test waveform are 
determined and applied to measurements of electri- 
cal power with a wattmeter [4]. 
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